
SYNTHESIS OF MESOIONIC 3-ARYL- AND 3-HETARYL-1,2,3,4-OXATRIAZOL-5-ONES

S. A. Shevelev, I. L. Dalinger, V. I. Gulevskaya, and T. I. Cherkasova

The mesoionic 3-R-1,2,3,4-oxatriazol-5-ones (3-R-1,2,3,4-oxatriazolium 5-olates, 3-R-azasydnones) present significant interest due to their antihypertensive activity [1]. However, the existing range of 3-arylazasydnones (I) is fairly limited. Thus, 3-hetarylazasydnones have been unknown until the present time. We found a method for the synthesis of (I) consisting in the reaction of bromonitroformaldehyde N-arylhydrazones (II) with alkali metal nitrates or ammonium nitrate in DMF or acetonitrile at ~20°C for several hours. It was communicated in the work [2] that the reaction of the hydrazones (II) (Ar = C_6H_5 and substituted C_6H_5) with NaNO₃ in DMF results in the formation of products of the substitution of the bromine atom by the nitrate grouping. However, not in one case did we find such compounds. The method allows the synthesis not only of the compounds (I) with various aryl (C_6H_5 , p-CH₃C₆H₄, m-CH₃OC₆H₄, p-BrC₆H₄, p-F, and p- and m-NO₂C₆H₄) substituents, described in the literature [1, 3], but also hetarylsydnones. The last were shown using the examples of 3-(4-nitropyrazol-3-yl)azasydnone (Ib).

Spectral indications allowing the reliable identification of (I) are as follows. The IR spectrum has a very strong band (usually as a doublet) at ~1800 cm⁻¹ (C-O⁻), and the ¹⁷O NMR spectrum has a characteristic narrow signal with the chemical shifts (from H₂O) of ~220 ppm (C- O^{-}), as well as a broad signal at ~360-370 ppm (O_{cyclic}). The mass spectrum has the signal of the fragment [M - NO]⁺.

Compound (Ia) has the mp 176-178°C (decomp.). The yield is 93%. The IR spectrum (pressed KBr, cm⁻¹) is as follows: 1345, 1540 (NO₂), 1790 (C $-O^-$), and 3300 (NH). The ¹H NMR (acetone-D₆) is characterized at 9.15 ppm (s, $C_{(5')}-\underline{H}$). The ¹³C NMR (acetone-D₆) is as follows: 129.19 ppm (s, $C_{(4')}$), 133.16 ppm (d, 203.3 Hz, $C_{(5')}$), 136.35 ppm (s, $C_{(3')}$), and 165.93 ppm (s, $\underline{C}-O^-$). The ¹⁴N NMR (acetone-D₆, from CH₃NO₂) is as follows: -23.03 ppm ($C_{(4')}-\underline{NO}_2$) and -83.03 ppm (N³). The ¹⁷O NMR (CD₃CN, from H₂O) is as follows: 225.2 ppm (C- \underline{O}^-), 369.6 ppm (O_{cyclic}), and 597.9 ppm (N \underline{O}_2). Found, %: C 24.5, H 1.2, and N 42.1. C₄H₂N₆O₄. Calculated, %: C 24.2, H 1.0, and N 42.4. Compound (Ib) has the mp 182°C (decomp.). The yield is 73%. The IR spectrum (pressed KBr, cm⁻¹) is as follows: 1815 (C $-O^-$) and 3300 (NH). The ¹H NMR (DMSO-D₆) is characterized at 9.00 ppm (s, C<u>H</u>). The ¹⁷O NMR (CD₃CN, from H₂O) is as follows: 221.0 ppm (C- \underline{O}^-) and 363.9 ppm (O_{cyclic}). Found, %: C 24.02, H 1.48, and N 54.38. C₃H₂N₆O₂. Calculated, %: C 23.38, H 1.30, and N 54.55.

REFERENCES

- 1. M. O. Lund, L. B. Kier, R. A. Glennon, and J. L. Egle, J. Med. Chem., 25, 1503 (1982).
- 2. A. I. Dychenko and P. S. Pel'kis, Ukr. Khim. Zh., 45, No. 5, 451 (1979).
- M. N. Martynova, M. S. Pevzner, N. A. Smorygo, and N. M. Serebryakova, Khim. Geterotsikl. Soedin., No. 12, 1682 (1981).

N. D. Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences (RAN), Moscow 117913. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 1002-1003, July, 1997. Original article submitted March 24, 1997.